A chromosomal position effect on gene targeting in human cells.

نویسندگان

  • Rafael J Yáñez
  • Andrew C G Porter
چکیده

We describe gene targeting experiments involving a human cell line (RAN10) containing, in addition to its endogenous alleles, two ectopic alleles of the interferon-inducible gene 6-16. The frequency of gene targeting at one of the ectopic 6-16 alleles (H3.7) was 34-fold greater than the combined frequency of gene targeting involving endogenous 6-16 alleles in RAN10. Preference for H3.7 was maintained when the target loci in RAN10 were transcriptionally activated by interferon. Despite the 34-fold preference for H3.7, the absolute gene targeting efficiency in RAN10 was only 3-fold higher than in the parental HT1080 cell line. These data suggest that different alleles can compete with each other, and perhaps with non-homologous loci, in a step which is necessary, but not normally rate-limiting, for gene targeting. The efficiency of this step can therefore be more sensitive to chromosomal position effects than the rate-determining steps for gene targeting. The nature of the position effects involved remains unknown but does not correlate with transcription status, which in our system has a very modest influence on the frequency of gene targeting. In summary, our work unequivocally identifies a position effect on gene targeting in human cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomal position effects on AAV-mediated gene targeting

The effects of chromosomal position and neighboring genomic elements on gene targeting in human cells remain largely unexplored. To study these, we used a shuttle vector system in which murine leukemia virus (MLV)-based proviral targets present at different chromosomal locations and containing mutations in the neomycin phosphotransferase (neo) gene were corrected by adeno-associated virus (AAV)...

متن کامل

Genomic targeting with purified Cre recombinase.

Purified Cre recombinase protein introduced directly into cultured mammalian cells by lipofection catalyzes both site-specific chromosomal integration of a co-transfected lox targeting vector and precise excision of genomic DNA flanked by directly repeated lox sites. This procedure eliminates the need to transfect cre expression plasmids to activate recombination at lox sites. We used this simp...

متن کامل

Stem Cells Application in Modeling of Human Genetic Diseases

The use of animal models in modeling of human genetic disease has many advantages. In some cases, however, this method may not be applicable due to some limitations, such as differences in tissue composition, anatomy and physiology of humans and animals. Isogenic human disease models are a population of cells that are selected or engineered to model a specific genetic disease, in vitro. They ar...

متن کامل

miR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting

Objective(s): MicroRNAs (miRNAs) are considered as powerful, post-transcriptional regulators of gene expression in hepatocellular carcinoma cells (HCC). However, the function of miR-92a is still unclear in HCC. Materials and Methods: Expression of miR-92a in human HCC cell lines was evaluated using qRT-PCR. MTT assay and transwell assay were used to examine the function of miR-92a in HepG2 and ...

متن کامل

Nickel Increases Chromosomal Abnormalities by Interfering with the Initiation of DNA Repair Pathways

Background: Nickel is a carcinogenic, heavy metal released through industrial activities and via natural resources. It is able to cause DNA damages by reducing the efficiency of DNA repair mechanisms. However, the exact time point at which it is able to interfere with these mechanisms is not yet clearly understood. Methods: To find the most nickel-vulnerable time of repair mechanisms, human de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 22  شماره 

صفحات  -

تاریخ انتشار 2002